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1. INTRODUCTION

In this note, it is shown that most classical Banach spaces can be renor-
med (with an equivalent norm) so that they are antiproximinal in their
bidual spaces. It is further shown that for many classical spaces X, there is
a norm so that % (X) is not proximinal in Z(X).

A subspace M is proximinal in a Banach space X if every x in X has a
closest approximant in M. It is called anriproximinal if the only vectors
with closest approximants are the elements of A. The consideration of
whether X is proximinal in X** was first studied in [1], where it was
shown to hold for most classical spaces. A case of particular interest is that
of the compact operators # (X) as a subspace of #(X), which is frequently
identified with A (X)** [3]. For 4# a Hilbert space, 4 (#) is well known
to be proximinal in #(5#) [5]. However, Holmes and Kripke [ 7] showed
that 3 can be renormed so that ¢ (5, |-|) is not proximinal in Z(H, ||}
They also showed how to renorm ¢, so as to be antiproximinal in iis
second dual. Blatter and Seever [2] showed that the disc algebra 4 is not
proximinal in A**. However, it remains an open question as to whether it
is proximinal in H%. It is also known that J#'({/7) is proximinal in #(/”) for
1<p<owc [6,9]. 1 have heard that Y. Benyamini and R. K. Lin have
shown that " (L7”) is not proximinal in Z(L?) for l<p<ox, p#2 [11]

When X has a Schauder basis (and somewhat more generally), X and
(X} can be renormed to be antiproximinal in their second duals. If X is
LP(u), 1 < p< oo, for some measure u (other than the sum of finitely many
atoms) or C(K), where K is an infinite, compact metric space, then X can
be renormed so that (X)) is not proximinal in #(X). Of course, the iden-
tity map [ always has O as its closest approximant, so J# (X} cannot be
antiproximinal in #(X). Finally, we give an example of a separabie,
reflexive Banach space X such that 2 (/', X} is not proximinal in Z(/\. X}.
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2. ANTIPROXIMINALITY

DEerFINITION 2.1. A Banach space X will be said to have the Projection
Approximation Property (P.A.P.) if there is an increasing sequence P, of
commuting, finite rank idempotents in #(X) tending strongly to the iden-
tity (i.e., lim, _ , P,x=x for all x in X.)

The Banach-Steinhaus theorem shows that the sequence P, is always
bounded. So it readily follows that when X has P.AP., it also has the
bounded approximation property (B.A.P.). Furthermore, it will be shown
below that X with P.A.P. can be renormed to have the metric
approximation property (M.A.P.). Many Banach spaces have P.A.P. In
particular, if X has a Schauder basis, the basic projections provide the
desired sequence. If X is reflexive and has P.A.P., then so does X*. For then
P¥ is a sequence of idempotents, and the Hahn-Banach theorem can be
used to show that P¥ tends strongly to 7 y«.

It will be of particular interest for us to know when spaces of compact
operators have P.A.P.

LeMMA 2.2. If X and Y have P.A.P. and X is reflexive, then (X, Y) has
P.AP.

Proof. let P, and @, be sequences for X and Y satisfying
Definition 2.1. For K in J#°(X, Y), define

'R'II(K) = Qll K'P" *

It is clear that R, is an increasing sequence of commuting finite rank idem-
potents. Since K is compact, the unit ball has compact image. So it follows
that

lim @, K=K

n— o

By the remarks preceding the proof, P¥ provides a P.A.P. sequence for X*.
So by the same reasoning,

lim P*K*=K*

n—

so that KP, tends to K. Thus
K— Rn(K) = (K_ QmK) + Qn(K_ K-Pn)

tends to zero in norm as # tends to infinity. |
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It is also the case that #"(c,) has P.A.P., but ,# (/') does not because it is
not separable.
The main theorem of this paper can now be stated.

Tueorem 2.3. If X has P.A.P., then X has an equivalenr norm |-| such
that (X, ||} is antiproximinal in (X, |-|)**.

This immediately yields renormings of spaces with Schauder bases, and
their spaces of compact operators so as to be antiproximinal in their
second duals. For example, C(K) when K is an infinite compact metric
space, L'(u) when yu is a o-finite measure space.

A7y and A7(L7(0, 1)), l<p<x, and A {coh

Lemma 24, If (X, |l has P.AP., then X has an equivalent norm |||
such that || P, =1 and || [ — P, || < 1. In particular, (X, ||- |||} has the metiic
approximation property.

Proof. Let

llxlf=sup  |(P,—P,ix]

Og<n<m<

where P, =0 by convention. As sup||P,|| < = and P,x tends to x for ali x
in X, there is a finite C so that

Ixl < lix il < Clixi.

Also, since P, P, =P

min(nLkys

m P/\Vm = Sup H(Pm - Pu) P/\\H

Osn<m< =«

= sup (P, —Pix[<|x]l

Osn<ms<k

and
If=Poxll=sup  [(P,— P )I—P.)x]
Osn<m<x
= sup (P, —Pix[<x]
k€n<m< x
So P ll<land | I-Pll<1 1
From now on, we shall always assume that (X, |-|) satisfies

Definition 2.1 with projections P, of norm one with |7 P,| <1 as well.
Let (7, [|-}}) be an arbitrary Banach space, and suppose that

T(X 1D = CF
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is a compact operator. Define a new norm on X and X** by
x| = llxll + | Tx1, xeX
lul = llull + 1 T**ul,  ueX**
Since |lull < |u] <(1+||T|)|ul, one has (X, |-|) equivalent to (X, ||-|) and
(X** |-]) equivalent to (X**, |-|).
LEMMA 2.5. In the situation described above, (X, |-|)¥* = (X** [-]).

Proof. Let {||-]|| be the rtorm on (X, |-])**. Fix « in X**, Since the unit
ball of (X, |-|) is weak® dense in the unit ball of (X**, ||-]), there is a net
X, in X such that

~ w¥

o =l %N <lull and X, ——>u

where £ is the canonical image of x in X** Since T** is weak* con-
tinuous, (Tx,)=T**x%, tends to T**u in the weak™® topology (indeed, in
norm). So

|k = llull + 1 T%*u| <Uml x| + [ T**%,]
=lim |x,[ = [la].
Conversely, one can choose the net x, in X so that
lxl<lul  and  X,—u

By the fact that 7** is the dual of a compact operator, Tx,= T**x, tends
to T**y in norm. Whence,

I el < L] £, Il = Lim flx, || + 1 T, |
= llull + 1 T**ull = [ul. N

Remark. 1t occurs to me that the compactness of T is probably
irrelevant. However, the proof given above relies heavily on this property.

LEMMA 2.6. In the situation described above, if lim,, _, ., | T(1 — P,)|| =0,

lim |P,|=1= lim |[I—P,).

n— oo n— oo

Proof. For x in X,

\Pox| NP x|+ 1 TPux] _ lxll + 1] + [ T3 — Pyl x|
| ] Ixl+ 17>~ llxll + Il Tl

<+ 7T =2l




]
o
g
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and
I({—P,)x| < HI—P)x|+1T(I—P,)x]
x| x|

<+ [T(1 =P

Both of these terms tends to 1 uniformly in x as » tends to infinity. §

Now for u in X**, define

du)= inf |lu— x| and d'(u)= inf |u— x|.
xe X xe kX

LEMMA 2.7.  Assume the hypotheses of Lemma 2.6. For all u in X**,

dlu)= lim |(I— P *)ul|= lim [(I— P}*)u| =d'(u).

n— H— G

Proof. Since P, has finite rank, P}** has the same range as P, and thus
PX*u belongs to X. So

du) < [(1—Py*)ul
for all n. Conversely, let x belong to X and note that

lim {[(/—PF*)ull < lIm [|(1—PF*)u—xj| + [(/—P,)x]

0= X " — X

< flu—xl + fim (7= P,)x] = Ju—x].

n— U

Taking the infimum over X yields

lim |[(I—PF*u|| =du).

n— x

Using Lemma 2.6, one similarly obtains

im |(I—PX¥*)Yu| =d'(u).

Finally, since |T**([— PX¥*)| =|T(1 — P,)| tends to zero,

d(u)= Um [(/—PF*)u| = m |(I—PF*)ul + [ T**(I— PF*)u|

n— x

= m {(/—PF*)ul =d(u). §

=

Proof of Theorem 2.3. First, use Lemma 2.4 to renorm X so that the
conclusions of that Lemma apply. Let Y=X® I'={(x,): x,€X,
> |lx,] < }. Given & >0, define a compact operator T from X into Y by

Tx=(2""eP,x).
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It is readily apparent that 7 is the limit of finite rank operators and is
injective. Furthermore,

ITU=P)xl| =Y 27"&||P(I— P)xl|

n=1
fee]
< Y 27| =25 |x].
n=k+1

Now |x|=|lx|| + || Tx| is defined as above. By Lemma 2.5, (X, |'])**=
(X**, |-]). Also, since T is injective, so is T**.

Now let u belong to X**. Suppose x belongs to X and d'(u)=|u—x|.
Then

llu = xI| < e — x| = Jlu — x| + [ T**(u — x) | = d'(u) = d(u) < lu—x]|.

Hence T7**(u—x)=0, and thus u=x belongs to X. So (X,]|]) is
antiproximinal in (X**,|-]). |

3. CoMPACT OPERATORS

In this section, the renorming argument of [ 7] is modified to apply to all
7 spaces, 1 < p < co. Then well known imbedding techniques give renor-
mings in many situations so that #'(X) is not proximinal in #(X).

LemMmA 3.1. Suppose (Y, ||-||) has P.A.P. and the projections P, satisfy
lim, _, . |[I—P,|=1. Then for all T in #(X, Y),

ITl,= inf |T—K|=Ilim [(/—P,)T]|
Ke A (X,Y)

Proof. Since P,T is compact, for any K in A (X, Y),
HT”6< hm “T——PnT” g hm ||(]—P11)(T“K)|| + H([—Pn)K“

- 0 n-—

<|T—K|+ lim ||[(I—P,)K|=|T—K].

Now take the infimum over all compact operators. |
Let Y be as in Lemma 3.1, and let |-| be the norm
vl=1xyl+ 1Ty
constructed, as in the proof of Theorem 2.3, so that T is injective and

lim |7(1—P,)[l =0

o= o0
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For A1in (X, Y), let |4] and | 4| be the norms of 4 as an operator from
X inte (Y, |-11) and (Y, |-]), respectively. Similarly, define |7, and |71,.
Then one has:
CoRrROLLARY 3.2. In the situation just described,
I4l,=1A4], forall 4in B(X, Y).

Proof. Clearly, |B| <|B] for all Bin Z(X, ¥). So by Lemmas 2.6 and
3.1,

l4l,<|A],= lim |(I—-P,)A|

< lgrg [(I—P)A| + T~ P, Al
:nlijr; II—-P)Al=14l.. &

THEOREM 3.3. Let X be a Banach space with P.A.P. Then X has an
equivalent norm |'| so that for all \<p<oo, XU (X'} is
antiproximinal in (17, (X, |-1)).

Proof. Let ||| be a norm on X as provided by Lemma 2.4, so that
P =1={-P,| for all the projections {P,}. Let |'| be the norm

x| = ix]| + | Tx|

as constructed in the proof of Theorem 2.3. Also, let @, be the standard
basis projections on span{e,,.., €,} in [¥ for some p in (1, 20).

Now let 4 be any bounded operator from /? into (X, |-|) with [4]|,=1. It
suffices to prove that |A4| > 1. Since 4 #0, one can choose an integer #, S0
that

Xo=Ae,, #0.

Thus §=||Tx,| >0 also. Let &=8%", where l/p+1/g=1. Since
(1—-P,)A(1~Q,) is a finite rank perturbation of 4, by Corollary 3.2
({—P,) AUI—Q,)|=1. So there are unit vectors y,=(1—0,)y, such
that

n— X
Now for n>ny,

3, + el = (1+e7)' P =(1407)""
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and

[A(y,+ee,)l =|Ay, + &xq
= Ay, +exol + | TAp, + eTx,||.

Since y, tends to zero in the weak topology on /7,

lim | TAy,| =0.

n— 0

Thus

ﬂ |‘4( yn + 8eno)l

H— O

2 hm [[(I—P,)Ay,| —ell(I—P,)xoll + &l Txo| — [ TAy,|

n — oo

=14+60=1+077+"=144"
It follows that

{+47 )
| 4] ?W=(l+5q)l'q.

So no non-zero operators have norm equal to their essential norm. [

Remark 3.4. This theorem holds with /” replaced by c¢,. To see this,
note that ||y, +ee,ll=1, and y, still tends weakly to zero. So the same
estimates are valid.

COROLLARY 3.5. For each 1 < p< o, there is a norm || on I7 so that
A" (1?) is not proximinal in B(17). Similarly, this holds for c,.

Proof. The space [” is isometrically isomorphic to /#@,[” with
I(x, ) = (Ix[12+ [ ¥l 2)"%. Put an equivalent norm on /7@ /” by

e, )= (x5 + 1 p17)'7

where || is the norm constructed in Theorem 3.2. The projection P onto
the first summand satisfies | P|| = |/ — P|| = 1. If T is any non-zero operator
of the form T'=(/— P) TP and K is compact, then

IT—-K|z|(I-PT—K)P|=|T—(1-P)KP|.

But (/— P) KP and T can be thought of as operators from [” to (/, |-]), so
the norm is strictly greater than | T)|.. Hence T has no closest approximant.
The case of ¢, follows from Remark 3.4. |
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COROLLARY 3.5. If an infinite dimensional space X is L?{u) for a Borel
measure g and 1 < p< o0 or X = C(K) for any infinite compact metric space
K, then X has an equivalent norm || so thar X' (X, |-|) is not proximinal ir
BX, 1)

Proof. Provided X=L?(u) is infinite dimensional, it contains an
isometric copy of /” which is the range of a norm one projection P [81.
Likewise, K contains a sequence x, with limit x,, and the restriction R to
A={x,, n=0} is a contractive map of C(K) onto ¢=~cy. By Michael’s
Selection Theorem [10], there is an isometric linear imbedding J of ¢ inio
C(K) so that P= RJ is a contractive projection onio a copy of ¢.

In each case, let [-| be a norm on /? (or ¢y} so that A7{({*) (or A (¢,) 1s
not proximinal in #(/?) (or #(c,)). Put a norm on X by

Il = llxll + (1Px} = | Px}})

Since |Px| — ||Px|| has the form || TPx]|, it is a seminorm, so || - || is a norm
such that [ Px || = |Px|. Now if T'is an operator on /” or ¢, for which there
is no closest compact approximant, then 7= PTP gives an operator on X
with the same property. Following the previous proof, if K is compact

\T— K| =T~ PKP|>|Tli..

In view of Theorem 3.3, one might ask about the proximinality of
A(IY, X) in B(I', X). However, the situation here is quite different. An
operator T in #(/', X) is determined by the sequence x,=Te, in X. Any
bounded sequence in X yields a bounded operator, and

1T =sup fix,.

It is shown in [4] that a best approximation of T by compact operators is
equivalent to finding a best approximation of the image of the unit ball
under 7 by a compact set in X. In [4, 97, it is shown that if X is uniformly
rotund, then »"({*, X) is proximinal in %(/', X).

In contrast to Theorem 3.2, #°(/', X) is never antiproximinal in #(/*, X).
To see this, let x, be any sequence dense in the unit ball of X {or the unit
ball of an infinite dimensional, separable subspace of X if X is not
separable). Then the operator T defined by Te,=x, has |T| =|Tj,=1 It
is possible, though, to find even reflexive Banach spaces X such thar
A°(I', X) is not proximinal in Z(/', X). In view of the remarks in the
preceding paragraph, this also yields an example of a closed bounded con-
vex set in X without best compact approximant.

EXAMPLE 3.6. Let X=@ > ,I" denote the /* direct sum of the /*
spaces for p=2,3,4... This is a reflexive Banach space with dual
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X*=®,>r , """ Y Let {e,,,,n=2,m>1} be a standard basis for /',
and let {f,,,,m>0} be a standard basis for /", n>2. Define T:!' > X by

Ten,m = f;l,O + fn,m -

Let P, be the obvious contractive projection from X onto /"
It is clear that |P,T|| =2"" and |T| = ﬁ For each n > 2, let K, be the
rank operator given by

Knek,m = 6nk n0

where 6, is the Kronecker delta function. It is readily apparent that
[P, T—K,| =1. Furthermore, Lemma 3.1 shows that

1P, T, =1
Thus
N—1 )
15 k[
n—1

and hence || T],=1.
It will be shown that T has no best compact approximant. Suppose K is
any compact operator from /' into X. Then it follows that

lim |P,K| =0.

n— oo

Thus there is an integer N so that | Py K| < 3. Since

IT—K|Z|1PyT—PyK],

it suffices to show that if C is a compact operator from /' into /* such that
[P, T—C| =1, then |C|| = 1. Let us write T, for P, T as an operator into
"

Fix 0<r<1, and let C be an operator from /* to /" with ||C||<r and
|T,— Cll < 1. For simplicity of notation, write e,, for e, ,, and f,, for f, ..
Let /¥ be the biorthogonal basis for I"/"~ D = (I")*. Let x,,= Te,,= fo + fim
and y,,= Ce,,. Since

/&) <ICl<r,
one has

|f6k(xm_ym)i>1_r
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whence
| 5= ) S (L= (1 —ry)t™.
From this, it follows that
fa(ya)l 21— (1= (1=r)")}"=0>0.

Hence by Lemma 3.1, if Q,, is the projection in /" onto span { fo.... /. },

IICIIe=nlijI}c II—Q,)Cl=6>0.
So C is not compact, and the argument is complete.

Although X is not uniformly rotund, it is easy to verify that it is locally

uniformly rotund in the sense that for all x in the unit ball of X, and
O<e<1

5(x,3)=inf{1— “%H Iyl =1, lx— vl ;a}

is strictly positive. This clearly shows the limits of the results of [4,9].
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